Let X be an ∞-topos, X and object. We construct an adjunction
Where the bottom category is defn - Symtr(X, C), category of symmetries of an object
Construction
ω takes f:X→Y to the symmetry given by cˇ(f).
β takes an algebra A acting on X to the geometric realization of the simplicial object
BarX/X∙(G,G,X)
The map X→β(A) is given by including the 0-th term in the simplicial object.
Digaram
https://q.uiver.app/?q=WzAsMixbMCwwLCJcXG1hdGhmcmFrIFhfe1gvfSJdLFswLDEsIlN5bXRyKFgsIFxcbWF0aGZyYWsgWCkiXSxbMCwxLCJcXG9tZWdhIiwwLHsibGFiZWxfcG9zaXRpb24iOjQwLCJvZmZzZXQiOi00fV0sWzEsMCwiXFxiZXRhIiwwLHsib2Zmc2V0IjotNH1dLFszLDIsIiIsMix7ImxldmVsIjoxLCJzdHlsZSI6eyJuYW1lIjoiYWRqdW5jdGlvbiJ9fV1d